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NASA TT F-15,207

DETERMINING THE MOVEMENT OF A LIQUID FOR A
CONDITION SPECIFIED ON A STREAMLINE

N. Ye. Zhukovskiy

§ 1. In our study, reported at the VIII Congress/of Russian Natural /89*

Scientists and Physicians i , we showed how concepts concerning generating and

guidance grids can be employed for the primary solutions of problems in

determining the flow of a liquid at a constant velocity, specified on an

unknown streamline2 . In this regard, we have in mind the application of the

aforementioned method of investigation to those cases in which a certain

relationship between velocity v and angle e of its inclination to axis ox must

be satisfied on a boundary line.

§ 2. In all investigations of free jets it is assumed that no forces are

acting on the liquid; now we shall examine a liquid under the influence of

gravity. Let the direction of axis ox coincide with the direction of the force

of gravity. The velocity of the liquid on the edge of the jet is expressed by

the formula:

v = 2gx + const., (1)

where g is the pull of gravity. We take the differential from both parts of /90

this formula, passing along the edge of the jet in the direction of the flow of

liquid to arc element ds. We obtain:

1"The Modified Kir choff Method for Determining the Flow of a Liquid in Two
Dimensions, and at a Constant Velocity Specified on an Unknown Streamline,"
Mdatematicheskiy Sbornik' [Mathematics Textbook], Vol. XV, 1890. /
2Almost simultaneously with our report, Michell read a report at the Royal
Society in London entitled, "On the Theory of Free Streamlines" (Philosophical
Transactions of the Royal Society of London, Vol. 181, 1890), in which the
author combines the Kirhoff Method with Schwartz and Christofel conformal
transforms and thereby solves some of the problems we solved. Having examined
Michell's readings, we conclude that the method of generating and guidance grids
is the most suitable for solving the problems under examination.
*Numbers in the margin indicate pagination in the foreign text.
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vc=gdx = gdscs C -S=

where Plis the potential of the velocities. From this formula it follows that

=3g cspd?

or
S10 = -- 10g s (2). (2)

where w is a certain constant velocity.

By i we symbolize an amount of flowing liquid and consider two imaginary

values, P1+ *i and 01+ ei, according to which the generating and guidance grids

are composed3 . We assume that both these imaginary values are in fact functions

of an argument variable u = + ni, representing a point of a certain semi-plane

(5 is assigned any actual value, while n - only positive values), and we write:

+ i r= (u) i 1(u). (3)

Here, we select function X(u) such that all its points of infinity lie on

an axis C or in infinity, and such that all of axis 5 is symbolized by lines

= const. Functions 4(u) and 1 (u) are selected such that they have only

logarithmic points of infinity lying on axis E or in infinity, and such that all

points of axis satisfy either condition e = const. or condition (2).

The first condition will be satisfied at those parts of the axis at which

function p(u) is actual, while function 1 (u) is a purely imaginary value.

We submit that on the remaining segments of axis E functions p(u) and 41 (u)

will be active and we shall attempt to choose them such that they satisfy the

second condition.

We make a substitution:

0,(u) = arccs(fu)

and determine p(u) by the aid of f(u) and X(u) according to equation (2).

3Modified KirPhoff Method § 3.
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We obtain:
W6(u) = - log, f(u)y'(u)du),

so that the guidance grid of the unknown flow will be given by the formula: /91

oi =g (- -f(u)z'(t)du) ±+ iarccs[f(u)]." (4)

If in certain segments of axis function q1 (u) were actual, while function

4(u) consisted of the actual part and the imaginary part +r, then equation (2)

would be satisfied because, in joining ±7r to angle 6 in formula (2), we thereby

create a value under the logarithmic law from negative positive.

The entire success of solution now depends upon the good selection of

functions X(u) and f(u).

§ 3. We assume that

f() = , (u) -u,3

-2g 2 . (5)

By formula (4) we find:

- + Oi= og ) + iarces (6)(. (6)

From the second formula (5), we see that the generating grid in the

supposition given here consists of equilateral hyperbolas provided by the

equations:

(7)

Streamline = 0 in this grid is the upper half of the axis of the ordinate

and the right and left halves of the axis of the abscissa. Moving along the

hyperbolas * = const. in the direction of the diminishing n corresponds to a

change in P Ifrom -- to +-.

Parameters 0 and 0 of the guidance grid seem to us to be differences in

the parameters of a certain elliptic and polar grid, since, having assumed:

3



(8)

- ccs9 8, = c.sn9,s:h ,
(9)

we find on the basis of formula (8) that

= (10)

The grid expressed by these formulas is shown in Figure 1. It has a pole /92

0 at the initial point of the coordinates, and two foci, f and f' at

distances c from this initial point. All lines 0 = const. proceed from pole

0 and once again intersect the axis of the abscissa at an oblique angle.

In the case of a constant equal to zero the line of this family stretches to

along axis On and, having branched into two branches at infinity, returns to

foci f and f' along the segments of the axis of the abscissa Ef and E'f'. With

a change in the constant from 0 to /2, we obtain line e = const., running to

the right and intersecting the axis of the abscissa at segment Of, while with

a change in it from 0 to -w/2 we obtain lines running to the right and inter-

secting the axis of the abscissa at segment Of'.

The set of lines 01= const.

with const. = log2 produces two

infinite lines mn and m'n',

separating at infinity into two

parts and encompassing the

entire region under examination.

'-___ With the change in the constant

A- . o m from log2 to -, lines 0\= const. /

Figure 1. take in pole 0 and diminish to

the point of coincidence with

it; with the change in the same constant from log2 to 0, lines 91= const.

4We designate those pdints in which the streamline passes from the walls of
the container to the edge of the jet.
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intersect the axis of the abscissa to the right and to the left from focus f

and to the right and to the left from focus f' and approach the lines which

intersect the axis of the abscissa at points f and f' and which lie outside the

region under examination.

We shall now superimpose the above-mentioned hyperbolic generating grid

on the structure of the guidance grid such that the axes of the coordinates /93

coincide. Since in the generating grid i changes from +- to -o, we are

dealing with an infinite stream of liquid. As a result of the fact that at all

points of infinity 90= log2 and -= 0,;here the stream will flow in the

direction of axis ox at a velocity of w/2. We find in our grids along the

streamline that * = 0, changing ;from -- to +-. We shall have the following

on axis On: e = 0 and \1changes from log2 to -. At point 0, angle 8 immedi-

ately changes from 0 to w/2 or to -r/2, depending upon whether we complete our

passage to the segment of the axis of the abscissa of or of', while 0=

(i.e., velocity v = 0). At segments of and of' conditions (2) is satisfied,

and angle 0 changes from ±+r/2 to 0, and \1changes from - to 0. At fE and f'',

angle 09= 0 and 0\changes from 0 to log2.

In reality, this corresponds to the flow of a stream of liquid (Figure 2)

of streamline nO, which at critical point 0 branches into two halves and forms

the contours of a jet of liquid, of and of', passing in points f and f' to the

immovable walls paralleling axis ox. Such a case could occur if we constructed

a vertical canal Eff'E' in the descending stream of a heavy liquid and joined

it with the reservoir of air under a certain determined pressure. We will have

results near those viewed as the ideal case of an unlimited flow if we construct

an instrument as shown in Figure 2, and the dimensions of the vessel which we

choose are significantly larger than the dimensions of the canal.

We shall determine the equation of contour of. On the basis of formula

(7), (8), (9), and (10), we write for segment of:

3 _ .! - : ..: (11-.G = (11)



On the other hand it is easy to see that for

a viscous streamline there are differential

equations:

d dy z= Snaf (12)

I Expressing Pland 6\by 6 by the aid of formula /94

(11) and substituting in formula (12), we obtain:

dx- cs9sn9d9,

Figure 2. y - sn 2 9.9g .

Integrating and determining the arbitrary constants under conditions

x = 0, y = 0 with e = t/2, we obtain:

2g

2 .,g 2 (13)

These formulas show that in Figure 2

eo = ef= 

and that the equation of contour of is:

N arcsn ,/ + g - 2g

§ 4. We now move on to the hypothesis that on the jet contour liquid

pressure and air pressure are mutually compensated for by the normal force

arising from the capillary tension of the surface of the liquid.

If we let p symbolize the pressure within the liquid and pl air pressure

lying along the contour of the jet, we will have:

V

P=P+ , (14)
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where p is the density of the liquid, p the coefficient of capillarity and R

the radius of curvature of the contour of the jet, considered positive in the

direction away from the mass of liquid. From these two written formulas we

obtain:

_= a --+ ,
(15)

where
p- - const. P

' ' (16)

But
1 do vdo

therefore • . ..n /95

or
fi- y) d. (17)

In this formula with positive R, one should choose sign (+), if angle 6

increases in the direction of the flow of liquid and sign (-), if angle 6

diminishes in this direction; with negative R one should proceed the opposite.

Having established that in the problems under examination the generating and

guidance grids are expressed by the same formulas (3), as in the above discussed

case, we apply the former conditions to functions (u) and 41 (u); it is only

required that in the segment of axis 5, which corresponds to the actual value

of these functions, that equation (17) be satisfied rather than equation (2).

It is easy to see, that for this one must state the following:

(U) a -6(u) bwe (U)

As a result of this, the guidance grid of the unknown flow will be given

by the formula:

S we (18)
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5 5. We assume that

() l -

and write according to formula (18), accepting R to be positive and 6 to be

increasing

A1(M) = -b - I - ° '(u)du,

where .

i-.:= ,, '/'i (19)

Then we take the following value for X'(u):

thus it follows that

Z 2b~w g u (20)

The guidance grid of the problem under examination in the case of the

assumptions made will be yielded by the formula:

. . " = 10 iar- cs .. l (21)
2(21)

We shall now construct the generating and guidance grids which we have /96

found. From formula (20) we see that the generating grid is a system of

mutually orthogonal circles, one of which (Figure 3) passes through poles q

and q',lying on axis E at distances a from the initial point of the coordinates

and that it has a center in axis n; the others have their center in axis 5,

while points q and q' are mutually polar relative to them. For any point m of

our semiplane, parameter i changes by a derivative of value

C

2baw

at angle qmq', while the value of parameter changes by a derivative of this

value to a logarithm of the relationship of radii mq and mq'. With the change

in i from 0 to .7

2baw
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line P = const. changes from segments of the axis of abscissa qE and q'C' to a
segment of the axis of the abscissa of qq'; with the change in CPfrom -- to +=,

lines P\= const. change from an infinitely small circle encompassing pole q to

an infinitely small circle encompassing pole q'.

The parameters of the guidance

grid, provided by formula (21), provide

us with the sum of parameters of the

lliptical grid and the grid

+-g- ±-o-- ± .

This last grid is shown in

. o - Figure (19) of our reading "The

Modified Method of Kirthoff" and
Figure 3. consists of Cassiniovals and a hyper- /97

bola passing through the poles at distances c from the initial point of the

coordinates. We thereby obtain

0= 1 + 02t (22)

where 62 and O are determined according to formula (9), while 01 and 0 are

determined according to the following formulas:

G,-= -( - arctad --- arctan-)I)

R'-" -- l-log/ (( --C)'+ :)(( c)'+ -')
,- C4 " (23)

The result of this presentation provides us with a grid shown in Figure 4.

Points f and f', distant from the initial points of the coordinates by a

distance c, serve as poles and foci for this grid. The lines of 0 = const.

pass from pole f or f' and intersect once again the axis of the abscissa at

segment ff' at an oblique angle. With the change in the constant from 0 to /2,

these lines pass from focus f and change from an infinitely small line to a line

running along a segment of the axis of the abscissa of fE to infinity and

returning along the axis of the ordinate nO; with the change in the constant
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from i/2 to r, we obtain lines running from the pole f' and changing from a

line running along segment f'' of the axis of the abscissa to infinity and

returning along the axis of ordinate On, to a certain infinitely small line.

The lines of 01= const. with const. = log2 produce two infinite lines mn and

m'n', branching into infinity at two segments and encompassing the entire region

under examination. With the change in the constant from log2 to 0, the lines

of the set under examination, ending between mn and m'n', change to lines which /98

intersect the axis of the abscissa in point 0 and which lie within the region

under examination; with the change in the constant from log2 to infinity,

these lines encompass poles f and fl and diminish to infinitely small

dimensions. From the above-stated it follows that in all points of infinity

We shall now assume that a is a posi-

tive value, i.e., a > c (according to

' /formula 19), and we shall superimpose

the generating grid of Figure 3 on the

guidance grid of Figure 4, such that the

axes of the coordinates coincide. Moving

along line = 0 in the direction of

S q'f -d o r £ q " increasing'P/, we will have the following:

Figure 4. at segment qE, angle 6 = 7/3 and 0lchanges

from value

o 10 1 + C2-

to log2; in segment E'q', angle 6 equals 7/2, while 61changes from log2 to %0.
This corresponds to Figure 5 in an actual flow of liquid of a straight stream-

line qq', running parallel from y. We now move along line

2bw (24)

in the direction of increasing P We will have angle 0 = 7/2 in a segment of

axis of abscissa qf, while 0 changes from /0 to -; in point f, angle 0

10



immediately changes to 0 and a= =; at the segment of axis of abscissa ff',

with condition (17) satisfied, angle a changes from 0 ton while 6/changes

from -, decreasing to 0 (at point 0) and then again increases to =; at point

f' angle e immediately changes by /2 and 6 = -; finally, at segment f'q',

angle e = 7/2 and 0 Ichanges from = to 60. This corresponds in an actual flow

of liquid to straight streamline qf, and jet contour fof', in which capillary

tension is active, and straight streamline fq'. The flow of liquid examined

by us will be included between the two found contours 5 . Here our assumption /99

that R is positive and 6 increases will be satisfied. If we add a symmetrical

flow to the found flow, on the other side of axis y, we will obtain the solu-

tion to the problem concerning the form of the air bubble within the liquid

flowing in canal qq'rr'; if we add to the entire system velocity

o  w:( c ) (25)

in a direction counter to axis o'y, then we obtain the solution to the problem

of movement of the air bubble within the liquid running in the canal.

We shall construct the equations of contour fof'.

S q According to formulas (22), (9), (23) and (20), we

I/ have at segment of:
- "-- C les !-- s

f-- - - . "- ' 2710<

2baw gl + 2b~cw g+ ccsO (26)

We substitute values determined from these formulas

in equation (12):

9 esedeO
dz

Id- bw~ snode

Figure 5. a- o

We integrate and determine the arbitrary constant under the condition that

with e = 0 we have x = 0, while with 6 = w/2 we have y = 0. We obtain:

5Modified method of Kirthoff, § 2. See portion on direction in which [Trans-
lator's Note: symbol blurred] increases.
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• 1 C a- C.S 0

bw 2a :_-C.CS I (27)

where for obtaining the points of contour fof' we must assign 0 values from 0

to 7. We see that the semiaxis of the bubble will have a length:

S00- 2  ac
S-- c -.-

It is easy to see that 00' > O'f'. This follows from the obvious inequality

. . .

which, on accomplishing integration, yields:

arcsn- C- >1 Ig + C

.V - 2 a- .-

With respect to the width of the canal, it is found from formulas (24)

and (25) by dividing the amount of flowing liquid by the velocity in the

infinitely long portions of the canal:

_ 1 = -" CV0 - a a ~+/ )

(28)

Having decided on relationship c/a and value w, we determine according to

formulas (28) and (25) the width of the canal and velocity v0, while according

to formula (27) we find the shape of the air bubble.

§ 5. We are limited in this note by two cited examples, but we feel

that formulas (4) and (18) with appropriate selection of the arbitrary

functions entering them still lead to solution of many other interesting

problems concerning the movement of a liquid under the effect of the force of

gravity and under the effect of capillary tension in a free contour jet.
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Translated for the National Aeronautics and Space Administration under
contract No. NASw-2484 by Scripta Publishing Company, 1511 K Street, N.W.,
Washington, D.C. 20005.

13


